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ABSTRACT

The possible economic value of the quantification of uncertainty in future ensemble-based surface weather
forecasts is investigated using a formal, idealized decision model. Current, or baseline, weather forecasts are
represented by probabilistic forecasts of moderate accuracy, as measured by the ranked probability score. Hy-
pothetical ensemble-based forecasts are constructed by supplementing the baseline set of probabilistic forecasts
with lower- and higher-skill forecasts. These are chosen in such a way that mixtures of the forecasts including
the lower- and higher-skill subsets with equal frequency exhibit the same accuracy overall as the moderately
accurate (conventional, baseline) forecasts. For both simple one-time decisions (static situation) and related
sequences of decisions (dynamic situation), these hypothetical ensemble-based forecasts are found to lead to
greater economic value in the idealized decision problem when protective actions are relatively inexpensive,
corresponding to real-world problems. However, for some decision problems considered, the ensemble-based
forecasts are slightly less valuable than the baseline forecasts. This result derives at least in part from the
(probably unrealistic ) assumption that the ensemble-based forecasts are no more skillful in aggregate than their
conventional counterparts, but implies that positive economic value for ensemble forecasts with respect to this
baseline will not be automatic. Rather, for ensemble-based forecasts to be at least as valuable for all decision
problems, they will need to exhibit sufficiently higher skill in aggregate than the conventional forecasts that
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could have been produced in their place.

1. Introduction

It is sometimes possible to identify, a priori, forecast
situations in which future atmospheric behavior is less
uncertain, or more uncertain, than usual. One approach
to this is through ensemble forecasting, which is im-
plemented by allocating available computer resources
to multiple runs (realizations) of a relatively low-res-
olution dynamical forecast model rather than to the
more conventional single high-resolution forecast re-
alization (Brooks and Doswell 1993; Mureau et al.
1993; Tracton and Kalnay 1993). Each of these runs
(ensemble members) is started from a slightly different
but plausible initial condition. Due to the chaotic nature
of atmospheric dynamics, the small perturbations grow
and eventually spread through the spectrum of atmo-
spheric motions. The dispersion among the ensemble
of forecasts on particular occasions has been found to
be related to atmospheric predictability (F. Molteni et
al. 1995, unpublished manuscript).

One way to think about the dispersion of forecasts
among the ensemble members is as an anticipation of
the intrinsic predictability of a given forecast (Kalnay
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and Dalcher 1987). Forecasts for which the ensemble
members are in relatively close agreement are expected
to be less uncertain, while cases where ensemble mem-
bers are very different from each other may be inter-
pretable as indicating higher uncertainty and portend-
ing relatively low forecast accuracy. Though work to
date has concentrated on the medium range, the meth-
odology may be equally appropriate for shorter-range
forecasts (Brooks et al. 1992; Mullen and Baumhefner
1994). In addition to potentially providing information
on forecast uncertainty, results from medium-range
forecasts indicate that the mean of an ensemble of fore-
casts is typically more skillful than the majority of in-
dividual forecasts, and more skillful than the single
higher-resolution forecast that could have been run in
their place (Toth and Kalnay 1993).

It is usually assumed implicitly that the enhanced
information_ available from ensemble forecasts will
yield greater economic value, but to our knowledge this
proposition has not yet been investigated formally. A
significant impediment to this kind of investigation is
that most real-world weather-sensitive decision prob-
lems relate to surface weather variables (e.g., maxi-
mum temperature or precipitation amount). While en-
semble forecasting of large-scale geopotential height
fields is presently practiced at major operational centers
(Mureau et al. 1993; Tracton and Kalnay 1993), to our
knowledge no ensemble-based forecast guidance for
surface weather elements is either available or under
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development. Therefore, we resort here to the analysis
of hypothetical ensemble-based forecasts of surface
weather, which may be broadly representative of the
kind of forecast guidance that may eventually become
available.

This paper uses decision analysis (e.g., Clemen
1991; Winkler and Murphy 1985; Katz and Murphy
1996) to explore the magnitude and nature of the eco-
nomic consequences that might derive from quantify-
ing forecast uncertainty for surface weather elements
using ensemble methods. Individual decision problems
are decomposed into sets of allowable actions (deci-
sions) and unknown future weather events. The eco-
nomic consequences of each of the possible pairs of the
actions and events are computed, and the action is cho-
sen that minimizes expected expense (or, equivalently,
maximizes expected income), given forecasts for the
future uncertain events. Here ‘‘expected’’ is meant in
the statistical sense of a probability-weighted average;
and.the probabilities are supplied by the weather fore-
casts, which are assumed to be well calibrated.

Baseline, or conventional, forecasts are regarded as
exhibiting a constant, moderate level of accuracy. En-
semble forecasts are assumed to exhibit either low,
moderate, or high accuracy, with this being specified a
priori, as part of each individual forecast. Hypothetical

surface . weather forecasts are constructed such that -

the ensemble-based forecasts (jointly, over all three
classes) and the conventional forecasts are equally ac-
curate on average, when the proportion of low- and
high-skill forecasts are equal. Therefore, the ensemble
forecasts include subsets that are better than the base-
line forecasts but also subsets that are of lower quality.

-

2. Forecasts

Because ensemble-based forecasts of surface weather
elements are not yet available, this study analyzes hy-
pothetical forecasts of an unspecified surface weather
variable. It is assumed that the weather event being fore-
cast is defined over five mutually exclusive and collec-

tively exhaustive categories, 6;, i = 1, ---, 5. To fix

ideas, it may be helpful to think of these as five bins of
daily precipitation amounts, or as five classes of daily
maximum temperature outcomes.

Hypothetical sets of climatological probabilities ;
for the five events are generated using beta distribu-
tions, integrated over five equal partitions of the inter-
val [0, 1], )

;= fx_ B(x; a, B)dx

_T@H B [ e
“Tr@ J-* 70
i=1,---,5 (1)

Here B(x; a, 8) indicates the beta probability density
function for the random variable x, having parameters
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aand B,x~ =(i—1)/5,x* =i/5,and I is the gamma
function. Different sets of climatological probabilities
are generated through different choices for the param-
eters a and B. For example, a = 0.75 and 8 = 1.25
results in the climatology vector = = (0.351, 0.224,
0.180, 0.146, 0.099), indicating relatively few events
in 6s.

The hypothetical ensemble-based forecasts consist
of three sets of probabilities f, ;;, where e = 1 indicates
the ‘‘good,’” or more accurate forecasts, e = 2 indicates
forecasts of intermediate accuracy, and ¢ = 3 indicates
the “‘poor,”” or less accurate forecasts. The subscript i
corresponds to the event §; being forecast, and it is
assumed that each of the three sets of forecasts consists
of five conditional probability distributions centered on
the corresponding event. For each value of e, f, ;; de-
notes the conditional probability of 8; given forecast
ji j=1,---,5 Thatis, it is assumed that each forecast
will be one of only five possible probability vectors.
Forecasters in a real-world setting would of course
have a much richer suite of possible forecasts from
which to choose. The forecast probabilities for the
baseline forecasts (i.e., no ensemble forecast informa-
tion) are assumed to be the same as those for the in-
termediate (¢ = 2) ensemble forecasts f5; ;.

Allocation of probability for the good (e = 1),
sharper forecast distributions is made by integrating a
Gaussian distribution over the event space

fig = f d(x; gy, 0)dx; i,j=1,---,5 (2)

where ¢ indicates the Gaussian probability density
function (chosen here for convenience), the mean of
which is y; = (j — 0.5)/5, and whose standard devia-
tion o can be varied to yield ensemble forecasts of dif-
fering quality. The limits of integration are as in (1),
exceptthatx™ = —oofori=1,and x* = +o fori = 5.
It is assumed that the forecasts in (2) are reliable, or
calibrated, in the sense that the forecast probabilities
correspond exactly to the long-run relative frequencies
of the events to which they pertain (e.g., Wilks 1995).
For this condition to hold, the frequency of use of each
of the five probability vectors f; ; must be consistent
with the vector of climatological probabilities in (1).
That is,

p=F'm, (3)
where the matrix F contains.the forecast probability
vectors as columns, the column vector 7 is derived
from (1); and the column vector p is the ‘predictive
distribution,”” containing the relative frequencies of
use, p;, of each of the five forecasts, j = 1, ---, 5.
Equation (3) allows determination of whether a given
set of forecast and climatological probabilities are mu-
tually consistent, in the sense that p satisfies the con-
straints required of a probability distribution. Note that
the assumption of forecast reliability is not restrictive,
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TasLE 1. Example set of forecast probabilities and corresponding
climatological probabilities, constructed using parameters o = 0.75,
B = 1.25, and o = 0.155. The frequency-of-use vector is p = (0.408,
0.169, 0.185, 0.171, 0.067), and the resulting RPS is 0.470.

J 6, 0, 05 0, [
fiis 1 0740 0233 0026  0.001 0.000
2 0259 0481 0233 0026  0.001
30027 0233 0481 0233  0.026
4 0001 0026 0233 0481 0.259
5 0000  0.001 0026 0233  0.740
fuy 1 0667  0.231 0055 0028 0019
2 0277 0433 0223 0048  0.019
3 0088 0231 0424 0217  0.040
4 0067 0063 0223 0418 0229
5 0066 0043 0055 0217 0619
fy 1 0568 0229 0094 0065 0044
20300 0367 0210 0079  0.044
30170 0229 0348 0194 0059
4 0156 0114 0210 0332  0.88
5 0155 0100 0094  0.194 0457
7r,- 0.351 0224  0.180  0.146  0.099

since probability forecasts known to exhibit imperfect
reliability can be recalibrated to yield revised proba-
bilities exhibiting this property.

The poor (e = 3) forecasts are constructed by relax-
ing the good forecasts toward the climatological prob-
abilities according to

g g
frij = (ﬁ)?ﬁ + (1 - E)ﬁ‘i"’

i,j=1,2,3,45 (4)

Thus for high forecast quality overall (small o) the
good and poor forecasts are quite similar, while for
decreasing forecast quality overall (increasing o) the
poor forecasts progressively resemble the climatologi-
cal probabilities. Since (4) is a linear combination of
(1) and (2), the probabilities f;;; and f; ; ; will yield the
same frequency-of-use vector p in (3).

The hypothetical baseline (e = 2) forecasts are pro-
duced as a weighted average of the good and poor fore-
casts [Eqs. (2) and (4)]. For differences in forecast
value to be attributable only to the difference in infor-
mation content between ensemble and baseline fore-
casts, the intermediate forecasts are constructed to have
expected [with respect to the probabilities in (3)] ac-
curacy, as measured by.the ranked probability score
(RPS) (Epstein 1969; Murphy 1969), that is equal
overall to the ensemble forecasts. It will be assumed
that the forecasts f,, ; and f;; ; are issued by the ensem-
ble forecasting system with equal frequency, so the po-
sition between them defining f; ; is chosen to yield the
same RPS as an equal mixture of these two sets of
forecasts. Thus, these forecasts are constructed by find-
ing the linear combination of f;;; and f; ; exhibiting an
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RPS that is equal to the average of the RPS values for
the good and poor forecasts. The resulting forecasts f; ; ;
also yield the same probabilities p in (3).

Table 1 shows an example set of forecasts, generated
using @ = 0.75, f = 1.25,and o = 0.155. The j = 1
forecasts, whose probabilities are most concentrated at
#,, are used most frequently (p, = 0.408); and the j
= 5 forecasts, whose probabilities are most concen-
trated at 65, are used least frequently (ps = 0.067).
Again, real-world forecasters would have the flexibility
to allocate probability in more ways than are repre-
sented by the 15 forecast vectors listed in Table 1.
When the sets of five probabilities are forecast with the
frequencies specified by the p;’s, RPS for the e = 2
(baseline) forecasts is 0.470. Since the RPS possesses
a negative orientation (smaller RPS is better) the RPS
for the good (e = 1) forecasts is lower, and RPS for
the poor (e = 3) forecasts is higher. However, mixtures
of forecasts drawn equally from the good and poor
forecasts (and also in proportion to the p;’s) also ex-
hibit average RPS = 0.470.

3. Decision-making models

Decision analysis is a well known and logically con-
sistent structure within which to analyze decision prob-
lems relating to uncertain future events, to find eco-
nomically optimal decisions, and to compute the eco-
nomic value (as distinct from the accuracy ) of forecast
information (e.g., Katz and Murphy 1996; Winkler and
Murphy 1985; Winkler 1972). At its root, decision
analysis is based on the simple principle that the opti-
mal decision maker will act to maximize expected (i.e.,
probability-weighted average) monetary return, or
(equivalently ) to minimize expected loss. For example,
if offered the choice between $5 for sure versus $15 on
the flip of a coin, an optimal decision maker would
choose the coin flip because the expected return for that
decision is $7.50. In this simple example, the proba-
bilities for the relevant events (heads and tails) are
clear. In more interesting problems, the probabilities
for the relevant events may not be so obvious. Different
and possibly competing sources of information (fore-
casts) may be available. The relative economic worth
of these information sources may also be computed, by
comparing the expected monetary returns that would
be realized by optimal decision makers utilizing each
of them. In the present context, these competing infor-
mation sources are the hypothetical ensemble-based
and conventional forecasts described in the previous
section.

a. Static decision problem

The five-action, five-event cost/loss ratio setting, a
simple idealized decision problem, is used here to in-
vestigate the nature of the potential economic value of
ensemble-based surface weather forecasts. For the
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static decision problem, this is a special case of the
problems described by Murphy (1985). The five
weather events 6, described in section 2 are regarded
as causing increasing levels of damage to a hypotheti-
cal economic enterprise. That is, they represent increas-
ingly adverse weather, with #, being not adverse and
causing no loss, and 85 being most adverse and causing
a complete loss of magnitude L if nos protective mea-
sures ‘are_employed. Proportional intermediate losses
result from events of intermediate adversity if no pro-
tective action is taken. For the static problem, it is as-
sumed that each decision is a one-time situation or, if
a series of such decisions are made, that each decision
in the series is not influenced, nor its outcome affected,
by the outcomes of previous or subsequent decisions.
Five levels of protection exist, which range from no
protective action at all (a,) to full protection (as). The
cost of protection varies linearly from zero for g, to the
cost of full protection C for as. For convenience these
costs are normalized by the magnitude of the full loss,
yielding a relative cost for the kth protection level

C\k—-1
Ck ( L ) 4 ’ k ]a ’ 5 . (5 )
Each of the protective actions prevent losses at that and
lesser levels of adverse weather, but allow fractional
losses to the extent that underprotection has been em-
ployed. Specifically, the loss sustained given the event
6; and the protective action g, is

i—k)l4, k<i
L.,k={( )

;o Lk=1,---,5 (6)

0, k=i

This function is displayed in Table 2.

The problem for the decision maker is to select the
level of protection that is optimal, in the sense of yield-
ing the minimum expected expense (cost of protection
plus loss), given available probability information re-
garding the upcoming weather event. If only the (con-
stant) climatological probabilities «; are available, the
same action will be optimal on each occasion, and the
expected expense is

Ecllm - mln(ck + 2 U Ll k)

i=1

(7D

For each possible action (indexed by k), the expected
loss is computed (summation within the parentheses)
and added to the known cost of protection for that ac-
tion. The expected expense is then the least of the five
possibilities.

Given the conventional baseline forecasts f,; ;, the
optimal action may be different for the different prob-
ability forecasts (values of j). Thus, the overall ex-
pected expense must be averaged over all of the pos-
sible forecasts, using as weights the frequencies of use
p; of each of the five distinct sets of forecast probabil-
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TaBLE 2. The loss function L, [Eq. (6)], normalized by the
magnitude of the full loss L, for the 5 X 5 cost/loss ratio problem;
as a function of the events 6, and the actions a,.

a az a, ay as
4, 0 0 0 0 0
6, 1fs Q Q 0 0
05 1 1/4 0 0 0
0, 3/a 15 A 0 0
95 1 3/a 1h /4 0

ities. The expected expense associated w1th the basehne
forecasts is then

S

E—base Z

[mln(Ck + Zfz., Lol (8)

Similarly, if the three sets of ensemble-based forecast
probabilities are available, the expected expense asso-
ciated with their use is the probability-weighted aver-
age of the use of all (3 X 5 =) 15 possible forecasts,
given by

em - 2 Z pej[mln(ck + z,ﬁlj tk)] (9)

e=1 j=1

Here it is assumed that the good and poor forecasts are
used with equal frequency, and that the frequency of
use of each of the probabilities p, ; is proportional to
the corresponding probability in the distribution spec-
ified by (3). The degree to which different levels of
forecast accuracy can be discriminated is then repre-
sented by the frequency of use of the three subsets (e
=1, 2, 3) of forecast probabilities, indexed here by the
parameter M (0 < M < 1) according to

. 1-M
b= 5 Dj
j=ij ’ J=1, 75 (10)
1-M
P = 5 pPj

When M = 1, the intermediate. forecasts are always
used, implying the conventional, baseline forecasts. At
the opposite extreme, M = ( implies that the ensemble- -
based system issues forecast probabilities only from the
sets f,,; and f;, ;. Because of the method of forecast
construction, the value of M does not affect the overall
(average) RPS.

The economic value associated with availability of
the ensemble forecasts, as compared to availability only
of the baseline forecasts is usually (e.g., Katz et al.
1982; Murphy 1985) given by the measure

V Ehasc - Et:ns ( 1 1 )

To the extent that use of the ensemble-based forecasts
results in a smaller expected expense, their value’ as
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measured by (11) will be positive. Since the units of
this hypothetical decision problem are arbitrary, we
also consider the nondimensional percentage reduction
in expected expense, in relation to the expense asso-
ciated with the climatological information,

_ E_basc — E

%V = X 100%. (12)

clim

b. Dynamic decision problem

The basic decision problem outlined in the previous
section can be generalized to a sequence of related de-
cisions. Fractional losses sustained in this sequence are
cumulative, and the full loss can be sustained at most
once. Thus available options at a given time, as well as
their consequences, depend on the previous time his-
tory of the decision sequence. In view of this time de-
pendence, such problems are often called ‘‘dynamic.”
The specific case considered here is the five-action and
five-event dynamic cost/loss ratio problem, which has
a structure analogous to the static problem described in
section 3a, and has been described previously by Wilks
(1991). ‘

As a sequence of decisions proceeds through time,
the degree of loss sustained is recorded by the state
variable \. For the simple 5 X 5 cost/loss ratio problem
considered here, the state variable records the degree
of loss sustained to date, the possible values of which
are 0, 1/4, 1/2, 3/4, and 1 [cf. (6) and Table 2]. At each
stage of the decision process, it is still the case that the
action g, is chosen which minimizes the expected ex-
pense, but for the current and all future decision peri-
ods. In comparison to (8) or (9), this choice is com-
plicated by two additional considerations. First, the op-
timal action may depend on the value of \. That is, the
best action can be a function of the degree of loss al-
ready sustained as a consequence of previous actions.
Effectively, N\ = 0 for all decisions in the static problem
described in section 3a, since there are no previous de-
cision periods in which losses could have accumulated.
Second, the degree to which the decision maker is will-
ing to expend resources on the protection costs C; will
depend on how many more decisions remain in the se-
quence. For example, it will certainly not be optimal to
protect multiple times if the total of the multiple pro-
tection costs is greater than the full loss [cf. Eq. (5)].
Effectively, the static problem described in section 3a
corresponds to the final decision in a sequence, in that
no further costs or losses can be incurred.

As a consequence of these two complications, the
analog of (9) for the dynamic decision problem is a
function of both the state variable \, and the position
in time within the decision sequence, ¢. Somewhat
counterintuitively, it is convenient to solve dynamic de-
cision problems of this kind in reverse time, using a
process known as ‘‘backward recursion’’ (e.g., Ken-
nedy 1986). Usually, the decision stages are numbered

WILKS AND HAMILL

3569

backward as well, so that ¢+ = 1 indicates the final de-
cision, ¢ = 2 the second-to-last decision, etc. Analogous
to (9), this recursion is defined by :

3 5 5
Ecns[)\9 t] = 2 2 pe,j{rnkin(ck + zfe,i,jEens

e=1 j=1 i=1

X [T(0;,ai, M), t = 1D}, (13)

where T(8;, a,, \) is the ‘‘transfer function.”” The
transfer function is essentially a pointer that specifies
the value of the state variable in the next time period
(t — 1), given that action g, was taken and event 0,
occurred. That is,

T(0:, a, \) = min(1, A + L; ). (14)

At each stage in the decision process the action a; is
selected as optimal that satisfies the minimization in the
curly brackets of (13), for the current and all subse-
quent decision periods. In addition to depending on the
forecast probability f,, ;, as in (9), the optimal action
can also depend on the value of the state variable \,
and the stage of the decision process ¢. The recursion
in (13) is ‘‘initialized’’ for ¢t = 0 with

Ees(N, 0) = \. (15)

That is, at the end of the decision sequence (¢ = 0) the
realized loss is given by the final value of A.

4. Results
a. Static decision problem

Consider first the value measure
Etim — E_cns
DoV im = Eaim = Ecns o 1009,

clim

(16)

This equation specifies the relative value of the ensem-
ble-based forecasts with respect to the climatological
probabilities, rather than comparing two forecast sys-
tems as do (11) and (12). Figure 1 shows %V, as a
function of overall forecast quality (RPS) and the abil-
ity to forecast forecast skill (M), for the cost/loss ratio,
C/L = 0.10, and the same climatological probabilities
obtained in Table 1. The most striking feature of Fig.
1 is that forecast value increases quite strongly with
decreasing RPS, as would generally be expected. How-
ever, over some portions of the RPS scale, a nonnegli-
gible difference in value is apparent between the top of
the figure (baseline forecasts, M = 1) and ensemble-
based forecasts in the lower portion of the figure, in-
dicating that issuance of the ensemble-based forecasts
does affect economic value for forecast users. In Fig.
1, and in other comparable figures (not shown), at each
RPS the reduction in expected expenses for M = 0.5 is
the average of the expected expense reductions for M
= 0 (no forecasts in the middle category) and M = 1
[for which the reduction in expected expense in Egs.
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Fic. 1. Percentage reduction in expected expenses for C/L = 0.10.

in relation to climatological information [Eq. (16)], as a function of
overall forecast accuracy as reflected by the RPS, and the frequency
of use of the middle-category forecasts M [Eq. (10)]. The climato-
logical probabilities are those corresponding to the parameters «
=0.75and 8 = 1.25, as in Table 1.

(11) and (12) is zero]. Accordingly, subsequent re-
sults will be presented in the forms of (11) and (12),
with M = 0 ensemble forecasts only, effectively dif-
ferencing horizontal cross sections at the top and bot-
tom of Fig. 1.

Figures 2—4 show value of the ensemble forecasts
with M = 0, according to (a) the expected expense
difference (11), and (b) the percentage reduction in
expenses relative to the climatological probabilities ac-
cording to (12). Results in Fig. 2 are for a relatively
“‘optimistic’’ climate (the harmless event 8, is most
likely), used also for construction of Table 1. Figure 3
shows results for nearly equal climatological probabil-
ities in each category, and Fig. 4 shows the correspond-

(a)

0.6 -~
T

0.4 1

C/L Ratio
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ing results for a ‘‘pessimistic’’ climatology, in which
the probabilities for the most damaging events are high.
The three figures are broadly similar, indicating little
dependence of forecast value on particular climatolo-
gies. :
As might be expected, all three cases in Figs. 2—4
indicate greatest value for the ensemble forecasts for
the smaller C/L ratios: for the large C/L ratios, protec-
tion is nearly as costly as allowing the loss. The dif-
ferences between the (a) and (b) panels are also most
noticeable for extremely small C/L, for which the
value measure in (12) becomes quite large. Inexpen-
sive protection will be chosen here given climatological
information, yielding low expected expense in the de-
nominator of (12). For the lower cost/loss ratios, fore-
cast value [Eq. (11)] is greatest for the forecasts with
higher overall RPS. Note that for very low RPS (ex-
tremely high forecast quality), the good, baseline, and
poor forecasts all approach perfect forecasts [o ap-
proaches zero in Egs. (2) and (4)], and the differences
between the ensemble and baseline results accordingly
approach zero.

. The regions in the lower-rlght portions of these fig-
ures are probably the most applicable to real-world de-
cision settings. Moderately low but nonzero C/L ratios
are likely to correspond most closely to real-world sit-
uations, since high C/L values would suggest marginal
economic viability unless the probability of damaging
weather is very low indeed. The higher RPS values are
indicative of forecasts fairly far from perfection. For
example, the forecasts presented in Table 1 correspond
to RPS = 0.47 mFlg 2.

Also apparent in Figs. 2—4 are regions (dashed con-
tours) where the hypothetical ensemble forecasts ex-
hibit negative value relative to the baseline forecasts.
These are located in portions of the figures that may be
of limited relevance to real-world problems, and/or ex-

\ \0.4
(b) 0
0.6 \
.g 0.4+
©
o
- .
(&)
0.2 4
1
0.0+
0.0

1

FIG. 2. Value of ensemble forecasts with M = 0 using (a) Eq. (11) and (b) Eq. (12), as a function of overall forecast accuracy (RPS) and
the C/L ratio. The values of a, 3, and the climatological probabilities are the same as for Table 1 and Fig. 1. Dashed contours indicate

negative values.
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(b) : 0
0.6 ™~
S 04+
©
o
= -
(®)
0.2
o]
|
12
0.0 T T T ﬂ|
0.0 0.1 0.2 0.3 0.4 0.5
RPS

FiG. 3. As in Fig. 2 with a = 1.25, § = 1.25, implying = = (0.168, 0.218, 0.228, 0.218, 0.168).

hibit negative values that are of small magnitude, but
their existence is nevertheless surprising. Recall that
the ensemble forecasts are constructed to have overall
RPS that is equal to their counterpart baseline forecasts.
The regions of negative value evidently correspond to
decision situations where the ‘‘good’’ forecasts are not
sufficiently good to compensate for the low quality of
the ‘‘poor’’ forecasts in the aggregate.

Figure 5 provides a closer look at the situation for
C/L = 0.10 for the climate represented in Fig. 2. The
percentage value in relation to climatological infor-
mation [Eq. (16)] for the baseline forecasts (or, equiv-
alently, ensemble forecasts with M = 1) is shown by
the solid line, and the corresponding result for the en-
semble forecasts (with M = 0) is shown by the dashed
line. Both are monotonically decreasing in RPS. The
latter is below the former in the regions (RPS < 0.11,
and 0.24 < RPS = 0.33) where the ensemble forecasts,
as constructed here, show less value than the baseline

C/L Ratio

forecasts. These regions are also reflected in Fig. 1, in
which the slope of the 50% contour is opposite in sign
to that of the 40% contour, and the 30% contour is
essentially vertical. The multiple crossings of these
lines are instances of ‘‘accuracy-value reversals,”’” as
have been described by Ehrendorfer and Murphy
(1988). That is, as a scalar measure the RPS provides

an incomplete characterization of forecast perfor-

- mance, and it can occur that forecasts exhibiting lower

(better) RPS are of less value for some decision prob-
lems.

b. Dynamic decision problem

As was done for the static problem, the results pre-
sented in this section pertain to the comparisons be-
tween M = 0 and M = 1, so the ensemble-based fore-
casts consist entirely of probabilities that are equally
partitioned between the high-skill (e = 1) and low-skill

(b) o—_|
0.6 .
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a s
- .
(@)
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FiG. 4. As in Fig. 2 with « = 1.75, g = 1.25, implying & = (0.079, 0.176, 0.239, 0.270, 0.236).
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FiG. 5. Relative forecast value in relation to climatological prob-
abilities [Eq. (16)] for ensemble forecasts with M = 0 (dashed line)
and baseline forecasts (solid line), in the situation corresponding to
C/L = 0.10 in Fig. 2.

(e = 3) forecasts. Figure 6 shows relative expense dif-
ferences [Eq. (12)] at ¢ = 15 days from the end of the
decision sequence, for (a) the ‘‘optimistic’’ climatol-
ogy (corresponding to Fig. 2), (b) the intermediate
climatology (corresponding to Fig. 3), and (c) the
‘‘pessimistic’’ climatology (corresponding to Fig. 4).
Here it has been assumed that £ = 15 is the beginning
of the decision sequence. Corresponding figures for
other decision periods are similar, because of the nor-
malization by the expected expense associated with cli-
matological information, although the absolute values
(not shown) diminish as ¢ increases. These estimates
of the economic value of the ensemble-based forecasts
with respect to the baseline forecasts are appreciable
for the small values of C/L that are most realistic for
a sequential decision problem of this kind. Regions in
the RPS—C/L space for which the modeled ensemble
forecasts are computed to have negative value also de-
crease as ¢ increases, and for ¢ = 15 these are very near
zero. The overall relative forecast value declines some-
what as the climate becomes progressively less favor-
able.

The basis for the positive economic value, for the
case of C/L = 0.05 and the forecasts shown in Table
1 in the “‘optimistic’’ climatology, is shown in Fig. 7.
Here the optimal actions a, are indicated using different
levels of shading, as a function of time ¢ in the decision
sequence and the forecast j, for the 12 possible com-
binations of loss A sustained to date and the three levels

of forecast quality e. Recall that the decision periods
" are numbered in reverse, so that forward time is from
left to right. Larger values of the forecast index j in-
dicate increasing probabilities for the most damaging
event 85 and decreasing probabilities for the harmless
event #,, and increasing levels of shading indicate pro-
gressively stronger levels of protection.
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The results in Fig. 2 for the static decision problem,
with C/L = 0.05 and RPS = 0.47, correspond to the
actions depicted in Fig. 7 for A = 0 and ¢ = 1. For the
baseline forecasts (¢ = 2), the optimal actions are full
protection (as) given the two forecasts (j = 4 and j
= 5) indicating the highest probabilities for the most
damaging events, 75% protection (a,) given the mod-
erately unfavorable forecasts (j = 2 and j = 3), and
50% protection (a;) given the forecast (j = 1) with the
lowest probabilities for unfavorable weather. These rel-
atively high levels of protection are optimal because
protection is inexpensive relative to the loss. Given
only climatological information, the optimal action
[Eq. (7)] is always full protection (as). The unshaded
areas in Fig. 7 represent situations where too many ad-
ditional decision periods remain before the end of the
sequence for protection to be worthwhile. Protection in
these instances would subject the decision maker to the
risk of spending as much or more in protection costs
than the avoided losses, by the time of the last decision.

The ensemble forecasts achieve economic value with
respect to the baseline forecasts in the static problem
on the basis of different actions being optimal for j = 1
and j = 2 given the more skillful forecasts. In these
instances, one level of protection less is justified on the
basis of the sharper probabilities in the good (e = 1)
forecasts. Given the differénces in expected losses,
these gains outweigh the relatively poorer economic
performance of the decisions that must be made when
the less accurate forecasts are available. In this latter
case, one level of protection greater is optimal for the
two forecasts j = 3 and j = 1, as a consequence of the
more diffuse probabilities available when e = 3.

In the dynamic decision problem, for which ¢ > 1
and A = 0.25 are also relevant, the same pattern of
differences in optimal actions is evident in Fig. 7 for
most combinations of j and ¢. That is, forecast value
can be realized by avoidance of unnecessary protection
when the more skillful forecasts are available, which
more than balances the requirement for more caution
(higher levels of protection ) when the less skillful fore-
casts occur. This is clear for A = 0, for which the op-
timal action does not change over the full decision se-
quence. It also occurs for situations where partial losses
have been sustained (A = 0.25), and increasing levels
of protection are optimal for decisions nearer to the end
of the sequence. In these instances the ability to defer
these protection costs when the more skillful forecasts
are available more than outweighs the necessity for ear-
lier caution in those decisions when the less skillful
forecasts are available.

5. Summary and conclusions

This paper has presented an initial, idealized exam-
ination of the potential economic value of ensemble-
based forecasts of surface weather elements, using hy-
pothetical probability forecasts that may be broadly
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representative of those that could be available from fu-
ture ensemble-based forecast guidance. Probability
forecasts were constructed exhibiting accuracies both
higher or lower than that of baseline forecasts, and the
hypothetical ensemble forecasts were drawn from these
in such a way that the baseline and ensemble-based
forecasts were equally accurate overall, as measured by
the RPS. That is, according to this familiar scalar mea-
sure of forecast accuracy, the ensemble and baseline
forecasts were equivalent. The computed economic
value of the ensemble forecasts is accordingly attrib-
uted to the additional information that would derive
ultimately from discrimination by the forecast ensem-
ble of situations that are less- or more-predictable than
usual.

For the most realistic combinations of the cost/
loss ratio and overall forecast accuracy, the modeled
ensemble-based forecasts show positive economic
benefit relative to the baseline forecast probabilities.
This is an encouraging result with respect to the
eventual operational adoption of ensemble-based
forecasts for sensible surface weather elements. The
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FiG. 6. Relative value of ensembie forecasts [Eq. (12)] in
the dynamic decision problem, as a function of the RPS and
different values of the C/L ratio, at ¢+ = 15 days from the end
of the decision sequence. The climatological parameters a, 5,
and 7 correspond to (a) those in Fig. 2, (b) those in Fig. 3,
and (c) those in Fig. 4.

degree of benefit is relatively insensitive to the cli-
matological probabilities for the different events,
which correspond to decision problems at different
locations or times of year.

It has been assumed here that the conventional and
ensemble-based forecast systems are competing, in the
sense that information originating from either one or
the other, but not both, would be available for use by
decision makers. This assumption is consistent with the
practical constraint that computing resources are limi-
ting in the operational forecast centers. We see the pres-
ent results as contributing to the ongoing discussion
regarding whether increased computing resources are
best allocated to increased model resolution, or to mul-
tiple integrations at some lesser resolution (Brooks and
Doswell 1993; Mullen and Baumhefner 1994). Of
course if guidance from both a single high-resolution
dynamical forecast and an ensemble of lower-resolu-
tion forecasts were available, a quite different analysis
than that presented here would be appropriate.

Both static and dynamic decision models indicated
positive economic value for the hypothetical ensemble-
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Fic. 7. Optimal actions as a function of time 7 in the decision sequence, the forecasts in Table 1,
and the loss X sustained to date, for the dynamic decision problem with C/L = 0.05.

based forecasts. However, because of the idealized na-
ture of the model decision problem, the present results
are at best suggestive of eventual economic benefits.
Modeling real-world decision problems requires struc-
tures that are much more elaborate (e.g., Katz et al.
1982; Wilks et al. 1993), but that are broadly similar
to those used here. The possible autocorrelation of fore-

cast skill, which would reflect the existence of persis-
tent regimes with high- and low-skill forecasts, was not
treated. However, previous experience with the inclu-
sion of autocorrelation of meteorological events into
the dynamic decision problem used here (Wilks 1991)
suggests that this aspect of the forecasts should further
increase forecast value in relation to sequences of de-
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cisions, as it implies the availability of yet more infor-
mation to decision makers.

Finally, an unexpected result is the existence of com-
binations of decision problems (i.e., C/L ratios), cli-
mates, and overall forecast quality, for which the en-
semble forecasts as constructed here yield lower eco-
nomic value than the baseline forecasts. In part, this
result is a consequence of the hypothetical ensemble
forecasts being constrained to have overall RPS that is
equal to that of the baseline forecasts. It is probably
justifiable to assume that ensemble-based forecasts will
exhibit greater accuracy in aggregate, because the dis-
crimination of less- and more-predictable forecast sit-
uations provides additional information. Furthermore,
for forecasts of midtropospheric geopotential height
fields, it is observed that the accuracy (as measured by
the anomaly correlation) of the average over a forecast
ensemble is greater than that of the corresponding sin-
gle higher-resolution conventional realization. How-
ever, the degree to which ensemble-based forecast
guidance may be more accurate in aggregate than its
conventional counterpart will not be known until such
guidance has been constructed and tested.

Even though negative value is not found in the most
relevant portions of the parameter space, and the com-
puted negative values are probably overstated, this result
has important implications and should be the subject of
further investigation. In particular, it implies that positive
economic value will not flow automatically from ensem-
ble-based forecasts. Rather, the ensemble-based forecasts
must be of sufficiently higher quality in aggregate than
their conventional counterparts for them to be universally
more valuable. For particular sets of ensemble-based and
conventionally produced forecasts, it is possible to deter-
mine whether this condition holds (Ehrendorfer and Mur-
phy 1988), but this determination must also await avail-
ability of experimental or operational ensemble-based
surface weather forecasts.
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